Environmental Sampling Methods for Detection of Salmonella Infections in Laying Hens: A Systematic Review and Meta-Analysis

Author:

Pacholewicz Ewa1,Wisselink Henk J.2ORCID,Koene Miriam G. J.2,van der Most Marleen2,Gonzales Jose L.1ORCID

Affiliation:

1. Department of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands

2. Department of Bacteriology, Host Pathogen Interaction & Diagnostics Development, Wageningen Bioveterinary Research, Wageningen University & Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands

Abstract

Salmonellosis is the second most commonly reported foodborne gastrointestinal infection in humans in the European Union (EU). Most outbreaks are caused by Salmonella Enteritidis, present in contaminated food products, particularly in egg and egg products. In recent years, an increase in the prevalence of Salmonella in laying hen flocks in the EU has been observed. For the effective control of infection, adequate detection is key. In laying hen flocks, the occurrence of Salmonella in the EU is monitored by the culture of environmental samples (dust, faeces, and boot swabs). The performance of sampling procedures described in the literature for the detection of Salmonella in laying hens was reviewed. In total, 924 abstracts were screened, resulting in the selection of 87 abstracts and 18 publications for qualitative and quantitative analyses, respectively. Sample sizes and sampling locations of faecal material and dust were variable and poorly described. Microbiological culture methods used to detect Salmonella were variably described in the literature and were often incomplete. Overall, the available literature indicates higher sensitivity of environmental versus individual hen matrices and points to differences in sensitivity between environmental matrices. For non-cage housing systems, boot swabs are the preferred samples, while for cage housing systems dust might be a more reliable sample.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Dutch Ministry of Agriculture, Nature and Food Quality

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3