Evaluation of the Survival of Lactobacillus fermentum K73 during the Production of High-Oleic Palm Oil Macroemulsion Powders Using Rotor-Stator Homogenizer and Spray-Drying Technique

Author:

Clavijo-Romero Angélica1,Moyano-Molano Miguel1,Bauer Estrada Katherine1,Pachón-Rojas Lina Vanessa1,Quintanilla-Carvajal María Ximena1

Affiliation:

1. Engineering Department, Universidad de la Sabana, Km 7 vía Autopista Norte, Chía 250001, Colombia

Abstract

This study aimed to evaluate the survival of the probiotic Lactobacillus fermentum when it is encapsulated in powdered macroemulsions to develop a probiotic product with low water activity. For this purpose, the effect of the rotational speed of the rotor-stator and the spray-drying process was assessed on the microorganism survival and physical properties of probiotic high-oleic palm oil (HOPO) emulsions and powders. Two Box–Behnken experimental designs were carried out: in the first one, for the effect of the macro emulsification process, the numerical factors were the amount of HOPO, the velocity of the rotor-stator, and time, while the factors for the second one, the drying process, were the amount of HOPO, inoculum, and the inlet temperature. It was found that the droplet size (ADS) and polydispersity index (PdI) were influenced by HOPO concentration and time, ζ-potential by HOPO concentration and velocity, and creaming index (CI) by speed and time of homogenization. Additionally, HOPO concentration affected bacterial survival; the viability was between 78–99% after emulsion preparation and 83–107% after seven days. The spray-drying process showed a similar viable cell count before and after the drying process, a reduction between 0.04 and 0.8 Log10 CFUg−1; the moisture varied between 2.4% and 3.7%, values highly acceptable for probiotic products. We concluded that encapsulation of L. fermentum in powdered macroemulsions at the conditions studied is effective in obtaining a functional food from HOPO with optimal physical and probiotic properties according to national legislation (>106 CFU mL−1 or g−1).

Funder

Universidad de La Sabana

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3