Abstract
Aerobic moderately thermophilic and thermophilic methane-oxidizing bacteria make a substantial contribution in the control of global warming through biological reduction of methane emissions and have a unique capability of utilizing methane as their sole carbon and energy source. Here, we report a novel moderately thermophilic Methylococcus-like Type Ib methanotroph recovered from an alkaline thermal spring (55.4 °C and pH 8.82) in the Ethiopian Rift Valley. The isolate, designated LS7-MC, most probably represents a novel species of a new genus in the family Methylococcaceae of the class Gammaproteobacteria. The 16S rRNA gene phylogeny indicated that strain LS7-MC is distantly related to the closest described relative, Methylococcus capsulatus (92.7% sequence identity). Growth was observed at temperatures of 30–60 °C (optimal, 51–55 °C), and the cells possessed Type I intracellular membrane (ICM). The comparison of the pmoA gene sequences showed that the strain was most closely related to M. capsulatus (87.8%). Soluble methane monooxygenase (sMMO) was not detected, signifying the biological oxidation process from methane to methanol by the particulate methane monooxygenase (pMMO). The other functional genes mxaF, cbbL and nifH were detected by PCR. To our knowledge, the new strain is the first isolated moderately thermophilic methanotroph from an alkaline thermal spring of the family Methylococcaceae. Furthermore, LS7-MC represents a previously unrecognized biological methane sink in thermal habitats, expanding our knowledge of its ecological role in methane cycling and aerobic methanotrophy.
Funder
Direktoratet for Utviklingssamarbeid
Subject
Virology,Microbiology (medical),Microbiology
Reference56 articles.
1. Climate Change:The Physical Science Basis, Contribution of Working Group I to the Fith Assessment Report of the IPCC.,2013
2. Reappraisal of the fossil methane budget and related emission from geologic sources
3. Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions
4. Activity and Diversity of Aerobic Methanotrophs in Thermal Springs of the Russian Far East;Tikhonova,2019
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献