Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance

Author:

Ruiz-Cruz Sofia,Parlindungan Elvina,Erazo Garzon Andrea,Alqarni Mona,Lugli Gabriele A.ORCID,Ventura Marco,van Sinderen Douwe,Mahony JenniferORCID

Abstract

Lactococcus lactis is the most widely exploited microorganism in global dairy fermentations. Lactococcal strains are described as typically harboring a number of prophages in their chromosomes. The presence of such prophages may provide both advantages and disadvantages to the carrying host. Here, we describe the deliberate generation of three distinct lysogens of the model lactococcal strain 3107 and the impact of additional prophage carriage on phage-resistance and anti-microbial susceptibility. Lysogen-specific responses were observed, highlighting the unique relationship and impact of each lysogenic phage on its host. Both homologous and heterologous phage-resistance profiles were observed, highlighting the presence of possible prophage-encoded phage-resistance factors. Superinfection exclusion was among the most notable causes of heterologous phage-resistance profiles with resistance observed against members of the Skunavirus, P335, P087, and 949 lactococcal phage groups. Through these analyses, it is now possible to identify phages that may pursue similar DNA injection pathways. The generated lysogenic strains exhibited increased sensitivity to the antimicrobial compounds, nisin and lysozyme, relative to the parent strain, although it is noteworthy that the degree of sensitivity was specific to the individual (pro)phages. Overall, the findings highlight the unique impact of each prophage on a given strain and the requirement for strain-level analysis when considering the implications of lysogeny.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3