Abstract
Moisture content in tidal flats changes frequently and spatially on account of tidal fluctuations, which greatly influence the reflectance of the tidal flat surface. Precise prediction of the spatial-temporal variation of tidal flats’ moisture content is an important foundation of surface bio-geophysical information research by remote sensing. In this paper, we first measured the multi-angle reflectance of soil samples obtained from tidal flats in the northeastern Dongtai, Jiangsu Province, China, in the laboratory. Then, based on the particle swarm optimization (PSO) algorithm, we retrieved the photometric characteristics of the soil surface by employing the SOILSPECT bidirectional reflectance model. Finally, the soil moisture content was retrieved by introducing the equivalent water thickness of the soil. The results showed that: (i) A significant correlation existed between the retrieved equivalent water thickness and the measured soil moisture content. The SOILSPECT model is capable of estimating soil moisture with high precision by using multi-angle reflectance. (ii) Retrieved values of single scattering albedo (ω) were consistent with the variation of soil moisture content. The roughness parameter (h) and the asymmetry factor (Θ) were consistent with the structure and particle composition of the soil surface in dry soil samples. (iii) When the soil samples were soaked with water, the roughness parameter (h) and the type of scattering on the soil surface both showed irregular changes. These results support the importance of using the measured soil particle size as one of the parameters for the retrieval of soil moisture content, which is a method that should be used cautiously, especially in tidal flats.
Funder
National Key Research and Development Program of China
Jiangsu Marine Science and Technology Innovation Project
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献