On the Acquisition of High-Quality Digital Images and Extraction of Effective Color Information for Soil Water Content Testing

Author:

Liu Guanshi,Tian Shengkui,Mo Yankun,Chen Ruyi,Zhao Qingsong

Abstract

Soil water content (SWC) is a critical indicator for engineering construction, crop production, and the hydrologic cycle. The rapid and accurate assessment of SWC is of great importance. At present, digital images are becoming increasingly popular in environmental monitoring and soil property analysis owing to the advantages of non-destructiveness, cheapness, and high-efficiency. However, the capture of high-quality digital image and effective color information acquisition is challenging. For this reason, a photographic platform with an integrated experimental structure configuration was designed to yield high-quality soil images. The detrimental parameters of the platform including type and intensity of the light source and the camera shooting angle were determined after systematic exploration. A new method based on Gaussian fitting gray histogram for extracting RGB image feature parameters was proposed and validated. The correlation between 21 characteristic parameters of five color spaces (RGB, HLS, CIEXYZ, CIELAB, and CIELUV) and SWC was investigated. The model for the relationship between characteristic parameters and SWC was constructed by using least squares regression (LSR), stepwise regression (STR), and partial least squares regression (PLSR). Findings showed that the camera platform equipped with 45° illumination D65 light source, 90° shooting angle, 1900~2500 lx surface illumination, and operating at ambient temperature difference of 5 °C could produce highly reproducible and stable soil color information. The effects of image scale had a great influence on color feature extraction. The entire area of soil image, i.e., 3,000,000 pixels, was chosen in conjunction with a new method for obtaining color features, which is beneficial to eliminate the interference of uneven lightness and micro-topography of soil samples. For the five color spaces and related 21 characteristic parameters, RGB and CIEXYZ spaces and characteristic parameter of lightness both exhibited the strongest correlation with SWC. The PLSR model based on soil specimen images ID had an excellent predictive accuracy and the best stability (R2 = 0.999, RMSE = 0.236). This study showed the potential of the application of color information of digital images to predict SWC in agriculture and geotechnical engineering.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3