Multi-Sensor Remote Sensing of Intertidal Flat Habitats for Migratory Shorebird Conservation

Author:

Lathrop Richard G.,Merchant Daniel,Niles Larry,Paludo Danielle,Santos Carlos DavidORCID,Larrain Carmen Espoz,Feigin Stephanie,Smith JosephORCID,Dey Amanda

Abstract

Many species of shorebirds migrate long distances from their overwintering grounds in the southern hemisphere to breeding grounds in the northern hemisphere. The coastal intertidal zone, consisting of sand and mud flats exposed at low tide and covered at high tide, is heavily used as a migratory stopover or overwintering habitat. Understanding the spatial distribution of sediment types at these stopover sites is a critical step for understanding habitat use by shorebird species. Due to their importance as overwintering and stopover habitat for the imperiled western Atlantic subpopulation of the shorebird, the red knot (Calidris canutus rufa), as well as other migratory shorebirds, the northern coast of Brazil between Pará and Maranhão, and Bahía Lomas in northern Tierra del Fuego, Chile, were selected for further investigation as to the applicability of remotely sensed characterization of the intertidal flat habitats. Examination of the Landsat 8 multispectral reflectance and Sentinel-1 SAR backscatter reveals that sand and mud represent endmembers at opposite ends of a continuous gradient in feature space. While remotely sensed data can be used to discriminate between mud and sand intertidal types, the spectral relationships varied between the two very different geographic locations. The inclusion of both multispectral and radar sensing imagery can lead to important insights about the physical properties of the sediment that would be omitted by using one data source alone. Spectral unmixing techniques in Google Earth Engine were used to map the intertidal zone into general sediment classes spanning the gradient (i.e., mud, sandy mud, muddy sand, and sand). Comparison of the mapped outputs with field reference data suggests that mapping of mud- vs. sand-dominated areas can be accomplished with reasonable accuracy (overall accuracy of 75%).

Funder

Neotropical Migratory Bird Conservation Act of 2000

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3