Low-Rank Multi-Channel Features for Robust Visual Object Tracking

Author:

Fawad ORCID,Jamil Khan MuhammadORCID,Rahman MuhibUrORCID,Amin YasarORCID,Tenhunen Hannu

Abstract

Kernel correlation filters (KCF) demonstrate significant potential in visual object tracking by employing robust descriptors. Proper selection of color and texture features can provide robustness against appearance variations. However, the use of multiple descriptors would lead to a considerable feature dimension. In this paper, we propose a novel low-rank descriptor, that provides better precision and success rate in comparison to state-of-the-art trackers. We accomplished this by concatenating the magnitude component of the Overlapped Multi-oriented Tri-scale Local Binary Pattern (OMTLBP), Robustness-Driven Hybrid Descriptor (RDHD), Histogram of Oriented Gradients (HoG), and Color Naming (CN) features. We reduced the rank of our proposed multi-channel feature to diminish the computational complexity. We formulated the Support Vector Machine (SVM) model by utilizing the circulant matrix of our proposed feature vector in the kernel correlation filter. The use of discrete Fourier transform in the iterative learning of SVM reduced the computational complexity of our proposed visual tracking algorithm. Extensive experimental results on Visual Tracker Benchmark dataset show better accuracy in comparison to other state-of-the-art trackers.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3