Learning Background-Suppressed Dual-Regression Correlation Filters for Visual Tracking

Author:

He Jianzhong1,Ji Yuanfa123,Sun Xiyan1234,Wu Sunyong5,Wu Chunping1,Chen Yuxiang1

Affiliation:

1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

2. National & Local Joint Engineering Research Center of Satellite Navigation Positioning and Location Service, Guilin University of Electronic Technology, Guilin 541004, China

3. Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China

4. GUET-Nanning E-Tech Research Institute Co., Ltd., Nanning 530031, China

5. School of Mathematical and Computational Sciences, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

The discriminative correlation filter (DCF)-based tracking method has shown good accuracy and efficiency in visual tracking. However, the periodic assumption of sample space causes unwanted boundary effects, restricting the tracker’s ability to distinguish between the target and background. Additionally, in the real tracking environment, interference factors such as occlusion, background clutter, and illumination changes cause response aberration and, thus, tracking failure. To address these issues, this work proposed a novel tracking method named the background-suppressed dual-regression correlation filter (BSDCF) for visual tracking. First, we utilize the background-suppressed function to crop out the target features from the global features. In the training step, while introducing the spatial regularity constraint and background response suppression regularization, we construct a dual regression structure to train the target and global filters separately. The aim is to exploit the difference between the output response maps for mutual constraint to highlight the target and suppress the background interference. Furthermore, in the detection step, the global response can be enhanced by a weighted fusion of the target response to further improve the tracking performance in complex scenes. Finally, extensive experiments are conducted on three public benchmarks (including OTB100, TC128, and UAVDT), and the experimental results indicate that the proposed BSDCF tracker achieves tracking performance comparable to many state-of-the-art (SOTA) trackers in a variety of complex situations.

Funder

the National Natural Science Foundation of China

the Guangxi Science and Technology Department Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3