Abstract
Many oomycetes are important plant pathogens that cause devastating diseases in agricultural fields, orchards, urban areas, and natural ecosystems. Limitations and difficulties associated with isolating these pathogens have led to a strong uptake of DNA metabarcoding and mass parallel sequencing. At least 21 primer combinations have been designed to amplify oomycetes, or more specifically, Phytophthora species, from environmental samples. We used the Illumina sequencing platform to compare 13 primer combinations on mock communities and environmental samples. The primer combinations tested varied significantly in their ability to amplify Phytophthora species in a mock community and from environmental samples; this was due to either low sensitivity (unable to detect species present in low concentrations) or a lack of specificity (an inability to amplify some species even if they were present in high concentrations). Primers designed for oomycetes underestimated the Phytophthora community compared to Phytophthora-specific primers. We recommend using technical replicates, primer combinations, internal controls, and a phylogenetic approach for assigning a species identity to OTUs or ASVs. Particular care must be taken if sampling substrates where hybrid species could be expected. Overall, the choice of primers should depend upon the hypothesis being tested.
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献