Author:
Merciol François,Faucqueur Loïc,Damodaran Bharath,Rémy Pierre-Yves,Desclée Baudouin,Dazin Fabrice,Lefèvre Sébastien,Masse Antoine,Sannier Christophe
Abstract
Land cover mapping has benefited a lot from the introduction of the Geographic Object-Based Image Analysis (GEOBIA) paradigm, that allowed to move from a pixelwise analysis to a processing of elements with richer semantic content, namely objects or regions. However, this paradigm requires to define an appropriate scale, that can be challenging in a large-area study where a wide range of landscapes can be observed. We propose here to conduct the multiscale analysis based on hierarchical representations, from which features known as differential attribute profiles are derived over each single pixel. Efficient and scalable algorithms for construction and analysis of such representations, together with an optimized usage of the random forest classifier, provide us with a semi-supervised framework in which a user can drive mapping of elements such as Small Woody Features at a very large area. Indeed, the proposed open-source methodology has been successfully used to derive a part of the High Resolution Layers (HRL) product of the Copernicus Land Monitoring service, thus showing how the GEOBIA framework can be used in a big data scenario made of more than 38,000 Very High Resolution (VHR) satellite images representing more than 120 TB of data.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献