Detection and Monitoring of Woody Vegetation Landscape Features Using Periodic Aerial Photography

Author:

Strnad Damjan1ORCID,Horvat Štefan1,Mongus Domen1ORCID,Ivajnšič Danijel23ORCID,Kohek Štefan1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia

2. Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia

3. Faculty of Arts, University of Maribor, 2000 Maribor, Slovenia

Abstract

Woody vegetation landscape features, such as hedges, tree patches, and riparian vegetation, are important elements of landscape and biotic diversity. For the reason that biodiversity loss is one of the major ecological problems in the EU, it is necessary to establish efficient workflows for the registration and monitoring of woody vegetation landscape features. In the paper, we propose and evaluate a methodology for automated detection of changes in woody vegetation landscape features from a digital orthophoto (DOP). We demonstrate its ability to capture most of the actual changes in the field and thereby provide valuable support for more efficient maintenance of landscape feature layers, which is important for the shaping of future environmental policies. While the most reliable source for vegetation cover mapping is a combination of LiDAR and high-resolution imagery, it can be prohibitively expensive for continuous updates. The DOP from cyclic aerial photography presents an alternative source of up-to-date information for tracking woody vegetation landscape features in-between LiDAR recordings. The proposed methodology uses a segmentation neural network, which is trained with the latest DOP against the last known ground truth as the target. The output is a layer of detected changes, which are validated by the user before being used to update the woody vegetation landscape feature layer. The methodology was tested using the data of a typical traditional Central European cultural landscape, Goričko, in north-eastern Slovenia. The achieved F1 of per-pixel segmentation was 83.5% and 77.1% for two- and five-year differences between the LiDAR-based reference and the DOP, respectively. The validation of the proposed changes at a minimum area threshold of 100 m2 and a minimum area percentage threshold of 20% showed that the model achieved recall close to 90%.

Funder

Slovenian Research Agency

Slovenian Ministry of Agriculture, Forestry, and Food

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3