Efficient compressed storage and fast reconstruction of large binary images using chain codes

Author:

Strnad DamjanORCID,Žlaus Danijel,Nerat Andrej,Žalik Borut

Abstract

AbstractLarge binary images are used in many modern applications of image processing. For instance, they serve as inputs or target masks for training machine learning (ML) models in computer vision and image segmentation. Storing large binary images in limited memory and loading them repeatedly on demand, which is common in ML, calls for efficient image encoding and decoding mechanisms. In the paper, we propose an encoding scheme for efficient compressed storage of large binary images based on chain codes, and introduce a new single-pass algorithm for fast parallel reconstruction of raster images from the encoded representation. We use three large real-life binary masks to test the efficiency of the proposed method, which were derived from vector layers of single-class objects – a building cadaster, a woody vegetation landscape feature map, and a road network map. We show that the masks encoded by the proposed method require significantly less storage space than standard lossless compression formats. We further compared the proposed method for mask reconstruction from chain codes with a recent state-of-the-art algorithm, and achieved between $$12\%$$ 12 % and $$33\%$$ 33 % faster reconstruction on test data.

Funder

Slovenian Research and Innovation Agency

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3