Tracking of Multiple Closely Spaced Extended Targets Based on Prediction-Driven Measurement Sub-Partitioning Algorithm

Author:

Sun Lifan,Yu Haofang,Fu Zhumu,He Zishu,Tao Fazhan

Abstract

For multiple extended target tracking, the accuracy of measurement partitioning directly affects the target tracking performance, so the existing partitioning algorithms tend to use as many partitions as possible to obtain accurate estimates of target number and states. Unfortunately, this may create an intolerable computational burden. What is worse is that the measurement partitioning problem of closely spaced targets is still challenging and difficult to solve well. In view of this, a prediction-driven measurement sub-partitioning (PMS) algorithm is first proposed, in which target predictions are fully utilized to determine the clustering centers for obtaining accurate partitioning results. Due to its concise mathematical forms and favorable properties, redundant measurement partitions can be eliminated so that the computational burden is largely reduced. More importantly, the unreasonable target predictions may be marked and replaced by PMS for solving the so-called cardinality underestimation problem without adding extra measurement partitions. PMS is simple to implement, and based on it, an effective multiple closely spaced extended target tracking approach is easily obtained. Simulation results verify the benefit of what we proposed—it has a much faster tracking speed without degrading the performance compared with other approaches, especially in a closely spaced target tracking scenario.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

National Defense Basic Scientific Research Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3