Adaptive Sample-Size Unscented Particle Filter with Partitioned Sampling for Three-Dimensional High-Maneuvering Target Tracking

Author:

Deng Qi,Chen Gang,Lu Huaxiang

Abstract

High-maneuvering target tracking is a focused application area in radar positioning and military defense systems, especially in three-dimensional space. However, using a traditional motion model and techniques expanded from general two-dimensional maneuvering target tracking may be inaccurate and impractical in some mission-critical systems. This paper proposes an adaptive sample-size unscented particle filter with partitioned sampling (PS-AUPF), which is used to track a three-dimensional, high-maneuvering target, combined with the CS-jerk model. In PS-AUPF, the partitioned sampling is introduced to improve the resampling and predicting process by decomposing motion space. At the same time, the adaptive sample size strategy is used to adjust the sample size adaptively in the tracking process, according to the initial parameters and the estimated state variance of each time step. Finally, the effectiveness of this method is validated by simulations, in which the sample size of each algorithm is set to the minimum required for the optimal accuracy, thus ensuring the reliability of the tracking results. The results have shown that the proposed PS-AUPF, with higher accuracy and lower computational complexity, performs better than other existing tracking methods in three-dimensional high-maneuvering target tracking scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3