Joint Probabilistic Hypergraph Matching Labeled Multi-Bernoulli Filter for Rigid Target Tracking

Author:

Huang Yuan,Wang Liping,Wang XueyingORCID,An Wei

Abstract

The likelihood determined by the distance between measurements and predicted states of targets is widely used in many filters for data association. However, if the actual motion model of targets is not coincided with the preset dynamic motion model, this criterion will lead to poor performance when close-space targets are tracked. For rigid target tracking task, the structure of rigid targets can be exploited to improve the data association performance. In this paper, the structure of the rigid target is represented as a hypergraph, and the problem of data association is formulated as a hypergraph matching problem. However, the performance of hypergraph matching degrades if there are missed detections and clutter. To overcome this limitation, we propose a joint probabilistic hypergraph matching labeled multi-Bernoulli (JPHGM-LMB) filter with all undetected cases being considered. In JPHGM-LMB, the likelihood is built based on group structure rather than the distance between predicted states and measurements. Consequently, the probability of each target associated with each measurement (joint association probabilities) can be obtained. Then, the structure information is integrated into LMB filter by revising each single target likelihood with joint association probabilities. However, because all undetected cases is considered, proposed approach is usable in real time only for a limited number of targets. Extensive simulations have demonstrated the significant performance improvement of our proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3