Abstract
We evaluated electrocardiogram (ECG) biometrics using pre-configured models of convolutional neural networks (CNNs) with various time-frequency representations. Biometrics technology records a person’s physical or behavioral characteristics in a digital signal via a sensor and analyzes it to identify the person. An ECG signal is obtained by detecting and amplifying a minute electrical signal flowing on the skin using a noninvasive electrode when the heart muscle depolarizes at each heartbeat. In biometrics, the ECG is especially advantageous in security applications because the heart is located within the body and moves while the subject is alive. However, a few body states generate noisy biometrics. The analysis of signals in the frequency domain has a robust effect on the noise. As the ECG is noise-sensitive, various studies have applied time-frequency transformations that are robust to noise, with CNNs achieving a good performance in image classification. Studies have applied time-frequency representations of the 1D ECG signals to 2D CNNs using transforms like MFCC (mel frequency cepstrum coefficient), spectrogram, log spectrogram, mel spectrogram, and scalogram. CNNs have various pre-configured models such as VGGNet, GoogLeNet, ResNet, and DenseNet. Combinations of the time-frequency representations and pre-configured CNN models have not been investigated. In this study, we employed the PTB (Physikalisch-Technische Bundesanstalt)-ECG and CU (Chosun University)-ECG databases. The MFCC accuracies were 0.45%, 2.60%, 3.90%, and 0.25% higher than the spectrogram, log spectrogram, mel spectrogram, and scalogram accuracies, respectively. The Xception accuracies were 3.91%, 0.84%, and 1.14% higher than the VGGNet-19, ResNet-101, and DenseNet-201 accuracies, respectively.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献