AI-Assisted Sensor System for the Acetone and Ethanol Detection Using Commercial Metal Oxide-Based Sensor Arrays and Convolutional Neural Network

Author:

Heng Sinn Yen,Yap Keenan Zhihong,Lim Wei Yin,Ramakrishnan Narayanan

Abstract

AbstractIn recent decades, the traditional landscape of volatile organic compound (VOC) sensing has adopted a new perspective in enhancing the detection of useful VOCs using data intelligence to extract constructive insights of the sensor behaviour towards multiple gases. In the domain of gas sensing, VOCs such as acetone and ethanol have been widely used in sensor testing due to their closely related chemical properties, which poses a challenge in discrimination. Therefore, this study aims to discriminate acetone from ethanol with the use of readily available commercial metal oxide (MOx) sensors through the implementation of Deep Learning (DL) techniques. The data set obtained after exposing a sensing array comprising various MOx sensors to acetone and ethanol was converted to a time-frequency representation known as a scalogram to train and test a multi-input convolutional neural network (CNN). The results show that training the CNN model on the sensor array data set yields better results than with an individual sensor data set. The findings of this research substantiated the ability of DL models to better capture the dynamic interaction of the sensors with acetone and ethanol, leading to the implication of the DL classifier having the capacity to reject sensor inconsistencies and variations in the responses. This research holds promise for advancing health monitoring and disease detection, as the combination of MOx sensors and DL techniques is expected to make significant future contributions in these areas.

Funder

Monash University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3