2D-WinSpatt-Net: A Dual Spatial Self-Attention Vision Transformer Boosts Classification of Tetanus Severity for Patients Wearing ECG Sensors in Low- and Middle-Income Countries

Author:

Lu Ping1ORCID,Creagh Andrew P.1,Lu Huiqi Y.1ORCID,Hai Ho Bich2,Thwaites Louise2,Clifton David A.13,

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

2. Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam

3. Oxford Suzhou Centre for Advanced Research, Suzhou 215123, China

Abstract

Tetanus is a life-threatening bacterial infection that is often prevalent in low- and middle-income countries (LMIC), Vietnam included. Tetanus affects the nervous system, leading to muscle stiffness and spasms. Moreover, severe tetanus is associated with autonomic nervous system (ANS) dysfunction. To ensure early detection and effective management of ANS dysfunction, patients require continuous monitoring of vital signs using bedside monitors. Wearable electrocardiogram (ECG) sensors offer a more cost-effective and user-friendly alternative to bedside monitors. Machine learning-based ECG analysis can be a valuable resource for classifying tetanus severity; however, using existing ECG signal analysis is excessively time-consuming. Due to the fixed-sized kernel filters used in traditional convolutional neural networks (CNNs), they are limited in their ability to capture global context information. In this work, we propose a 2D-WinSpatt-Net, which is a novel Vision Transformer that contains both local spatial window self-attention and global spatial self-attention mechanisms. The 2D-WinSpatt-Net boosts the classification of tetanus severity in intensive-care settings for LMIC using wearable ECG sensors. The time series imaging—continuous wavelet transforms—is transformed from a one-dimensional ECG signal and input to the proposed 2D-WinSpatt-Net. In the classification of tetanus severity levels, 2D-WinSpatt-Net surpasses state-of-the-art methods in terms of performance and accuracy. It achieves remarkable results with an F1 score of 0.88 ± 0.00, precision of 0.92 ± 0.02, recall of 0.85 ± 0.01, specificity of 0.96 ± 0.01, accuracy of 0.93 ± 0.02 and AUC of 0.90 ± 0.00.

Funder

Wellcome Trust

RAEng Research Chair

NIHR Research Professorship

NIHR Oxford Biomedical Research Centre

nnoHK Hong Kong Centre for Cerebro-cardiovascular Health Engineering

the Pandemic Sciences Institute at the University of Oxford

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference60 articles.

1. Predicting the clinical outcome of tetanus: The tetanus severity score;Thwaites;Trop. Med. Int. Health,2006

2. Tetanus;Yen;Lancet,2019

3. Tetanus in southern Vietnam: Current situation;Thuy;Am. J. Trop. Med. Hyg.,2017

4. Botulism and tetanus;Thwaites;Medicine,2017

5. (2021, March 21). Disease Factsheet about Tetanus. Available online: https://www.ecdc.europa.eu/en/tetanus/facts.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3