Energy Accumulation Characteristics and Induced Rockburst Mechanism of Roadway Surrounding Rock under Multiple Mining Disturbances: A Case Study

Author:

Ma Zhenkai1,Li Sheng1,Zhao Xidong2

Affiliation:

1. School of Mining, Liaoning Technical University, Fuxin 123000, China

2. School of Mine Safety, North China Institute of Science and Technology, Langfang 065201, China

Abstract

The source of energy release when rockburst occurs must be determined to understand the mechanisms underlying disaster formation and achieve accurate prevention and control. Although previous research has systematically investigated the energy source underlying rockburst from different perspectives, issues such as an unclear understanding of the energy accumulation state and inaccurate positioning of the energy release source remain to be resolved. In this study, the “1·17” major roof accident in the Danshuigou Mine was used as the background to evaluate and analyze the stress environment and energy accumulation characteristics of roadway surrounding rock under multiple mining disturbances, and the results showed that a super energy package occurs in the surrounding rock of the mining roadway. Subsequently, the evolution process of energy in this region and the mechanism of induced rockburst were elaborated. The results showed that the degree of stress concentration in the surrounding rock of the roadway will increase several times as the number of mining disturbances increases. Under the influence of multiple mining disturbances, the maximum principal stress peak of the surrounding rock of the roadway can reach 5–10 times the maximum principal stress value outside the mining-affected area. A large amount of elastic energy was accumulated in the rock surrounding the roadway, and super-high-density energy packages were formed locally. The maximum energy density value reached 50–185 times the value observed in areas outside the mining-affected zone. Thus, rockburst may be induced when the large amount of energy accumulated in the super energy package is suddenly and violently released; moreover, the degree of energy accumulation in the super energy package is likely closely related to the magnitude of rockburst. These results have important theoretical significance and application value for clarifying the mechanism of rockburst and improving the effectiveness of rockburst prediction and prevention.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference38 articles.

1. Localization method of coal rock deformation for rock burst prediction;Pan;J. China Coal Soc.,2023

2. The method mechanism and application of preventing rock burst by artificial liberation layer of roof;Pan;J. China Coal Soc.,2023

3. Geo-dynamic division and its application in study of rock burst;Zhang;Coal Sci. Technol.,2023

4. Discussion on key problems in prevention and control system of coal mine rock burst;Jang;Coal Sci. Technol.,2023

5. Yang, Y., Cao, A., Liu, Y., Bai, X., Yan, Z., Wang, S., and Wang, C. (2023). Understanding the Mechanism of Strong Mining Tremors near the Goaf Area of Longwall Mining: A Case Study. Appl. Sci., 13.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3