Understanding the Mechanism of Strong Mining Tremors near the Goaf Area of Longwall Mining: A Case Study

Author:

Yang Yao1,Cao Anye123,Liu Yaoqi1ORCID,Bai Xianxi1,Yan Zhenqian1,Wang Songwei1,Wang Changbin4

Affiliation:

1. School of Mines, China University of Mining & Technology, Xuzhou 221116, China

2. Jiangsu Engineering Laboratory of Mine Earthquake Monitoring and Prevention, China University of Mining & Technology, Xuzhou 221116, China

3. Xuzhou Wushuo Information Co., Ltd., Xuzhou 221116, China

4. State Key Laboratory of Coal Resource and Safe Mining, China University of Mining & Technology, Xuzhou 221116, China

Abstract

Strong mining tremors (SMTs) frequently occur in super-thick strata near the goaf when mining. Since 2021, there have been three consecutive SMTs with magnitude greater than 2.0 in longwall 1208 of the Shilawusu Coal Mine. These SMTs caused mine production to be suspended for more than 290 days and affected over 100 households located on the shaking ground, and seriously threatened the safety of underground workers and restricted production capacity. Therefore, it is essential to investigate the occurrence mechanism of SMTs in super-thick strata goaf mining in order to understand the phenomenon, how the disaster of mining tremors occurs, and the prevention and control of mining tremor disasters. In this study, field observation, numerical analysis, and theoretical calculation were used to study the occurrence mechanism of three SMTs in the Shilawusu Coal Mine. The results show that the super-thick strata fracture induced by the SMTs is generally higher by one to three orders of magnitude in some of the source mechanical parameters compared to other mining tremors, and so is more likely to cause ground shaking. Field observations revealed that before and after the occurrence of SMTs, the maximum surface subsidence suddenly increased by about 0.1 m and showed a “stepped” increase, and the super-thick strata began to experience fractures. The following theoretical mechanics model of super-thick strata was established: at the goaf stage of mining, with the increase in the area of the hanging roof, the super-thick strata will experience initial and periodic fractures, which can easily induce SMTs. The relative moment tensor inversion method was used to calculate the source mechanism of SMTs, which was found to be caused by the tensile rupture resulting from the initial and periodic ruptures of super-thick strata, in addition to the shear rupture generated by the adjustment of unstable strata structures. As the mining continues on the longwall face, there is still a possibility of SMT occurrence. This paper provides some insights into the mechanism and prevention of SMT in underground coal mines.

Funder

National key research and development program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3