Data Preprocessing and Machine Learning Modeling for Rockburst Assessment

Author:

Li Jie12,Fu Helin12,Hu Kaixun12,Chen Wei12

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. National Engineering Laboratory for High Speed Railway Construction, Central South University, Changsha 410075, China

Abstract

Rockbursts pose a significant threat to human safety and environmental stability. This paper aims to predict rockburst intensity using a machine learning model. A dataset containing 344 rockburst cases was collected, with eight inducing features as input and four rockburst grades as output. In the preprocessing stage, missing feature values were estimated using a regression imputation strategy. A novel approach, which combines feature selection (FS), t-distributed stochastic neighbor embedding (t-SNE), and Gaussian mixture model (GMM) clustering, was proposed to relabel the dataset. The effectiveness of this approach was compared with common statistical methods, and its underlying principles were analyzed. A voting ensemble strategy was used to build the machine learning model, and optimal hyperparameters were determined using the tree-structured Parzen estimator (TPE), whose efficiency and accuracy were compared with three common optimization algorithms. The best combination model was determined using performance evaluation and subsequently applied to practical rockburst prediction. Finally, feature sensitivity was studied using a relative importance analysis. The results indicate that the FS + t-SNE + GMM approach stands out as the optimum data preprocessing method, significantly improving the prediction accuracy and generalization ability of the model. TPE is the most effective optimization algorithm, characterized simultaneously by both high search capability and efficiency. Moreover, the elastic energy index Wet, the maximum circumferential stress of surrounding rock σθ, and the uniaxial compression strength of rock σc were identified as relatively important features in the rockburst prediction model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3