Machine Learning Derived Lifting Techniques and Pain Self-Efficacy in People with Chronic Low Back Pain

Author:

Phan Trung C.,Pranata AdrianORCID,Farragher Joshua,Bryant Adam,Nguyen Hung T.ORCID,Chai RifaiORCID

Abstract

This paper proposes an innovative methodology for finding how many lifting techniques people with chronic low back pain (CLBP) can demonstrate with camera data collected from 115 participants. The system employs a feature extraction algorithm to calculate the knee, trunk and hip range of motion in the sagittal plane, Ward’s method, a combination of K-means and Ensemble clustering method for classification algorithm, and Bayesian neural network to validate the result of Ward’s method and the combination of K-means and Ensemble clustering method. The classification results and effect size show that Ward clustering is the optimal method where precision and recall percentages of all clusters are above 90, and the overall accuracy of the Bayesian Neural Network is 97.9%. The statistical analysis reported a significant difference in the range of motion of the knee, hip and trunk between each cluster, F (9, 1136) = 195.67, p < 0.0001. The results of this study suggest that there are four different lifting techniques in people with CLBP. Additionally, the results show that even though the clusters demonstrated similar pain levels, one of the clusters, which uses the least amount of trunk and the most knee movement, demonstrates the lowest pain self-efficacy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing diversity and robustness of clustering ensemble via reliability weighted measure;Applied Intelligence;2023-11-25

2. Estimation of Lumbar Spine Loading of Low Back Pain Participant During Lifting Using an Open Source Musculoskeletal Model;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

3. Machine Learning Derived Lifting Technique in People without Low Back Pain;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

4. Left and Right Cortical Activity Arising from Preferred Walking Speed in Older Adults;Sensors;2023-04-14

5. Wearable Sensors Applied in Movement Analysis;Sensors;2022-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3