Utilizing machine learning to analyze trunk movement patterns in women with postpartum low back pain

Author:

A. Abdel Hady Doaa,Abd El-Hafeez TarekORCID

Abstract

AbstractThis paper presents an analysis of trunk movement in women with postnatal low back pain using machine learning techniques. The study aims to identify the most important features related to low back pain and to develop accurate models for predicting low back pain. Machine learning approaches showed promise for analyzing biomechanical factors related to postnatal low back pain (LBP). This study applied regression and classification algorithms to the trunk movement proposed dataset from 100 postpartum women, 50 with LBP and 50 without. The Optimized optuna Regressor achieved the best regression performance with a mean squared error (MSE) of 0.000273, mean absolute error (MAE) of 0.0039, and R2 score of 0.9968. In classification, the Basic CNN and Random Forest Classifier both attained near-perfect accuracy of 1.0, the area under the receiver operating characteristic curve (AUC) of 1.0, precision of 1.0, recall of 1.0, and F1-score of 1.0, outperforming other models. Key predictive features included pain (correlation of -0.732 with flexion range of motion), range of motion measures (flexion and extension correlation of 0.662), and average movements (correlation of 0.957 with flexion). Feature selection consistently identified pain, flexion, extension, lateral flexion, and average movement as influential across methods. While limited to this initial dataset and constrained by generalizability, machine learning offered quantitative insight. Models accurately regressed (MSE < 0.01, R2 > 0.95) and classified (accuracy > 0.94) trunk biomechanics distinguishing LBP. Incorporating additional demographic, clinical, and patient-reported factors may enhance individualized risk prediction and treatment personalization. This preliminary application of advanced analytics supported machine learning's potential utility for both LBP risk determination and outcome improvement. This study provides valuable insights into the use of machine learning techniques for analyzing trunk movement in women with postnatal low back pain and can potentially inform the development of more effective treatments.Trial registration: The trial was designed as an observational and cross-section study. The study was approved by the Ethical Committee in Deraya University, Faculty of Pharmacy, (No: 10/2023). According to the ethical standards of the Declaration of Helsinki. This study complies with the principles of human research. Each patient signed a written consent form after being given a thorough description of the trial. The study was conducted at the outpatient clinic from February 2023 till June 30, 2023.

Funder

Minia University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3