Regression-Based Machine Learning for Predicting Lifting Movement Pattern Change in People with Low Back Pain

Author:

Phan Trung C.1ORCID,Pranata Adrian1234ORCID,Farragher Joshua34ORCID,Bryant Adam5,Nguyen Hung T.1ORCID,Chai Rifai1ORCID

Affiliation:

1. School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

2. School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

3. College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China

4. School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3000, Australia

5. Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, The University of Melbourne, Melbourne, VIC 3010, Australia

Abstract

Machine learning (ML) algorithms are crucial within the realm of healthcare applications. However, a comprehensive assessment of the effectiveness of regression algorithms in predicting alterations in lifting movement patterns has not been conducted. This research represents a pilot investigation using regression-based machine learning techniques to forecast alterations in trunk, hip, and knee movements subsequent to a 12-week strength training for people who have low back pain (LBP). The system uses a feature extraction algorithm to calculate the range of motion in the sagittal plane for the knee, trunk, and hip and 12 different regression machine learning algorithms. The results show that Ensemble Tree with LSBoost demonstrated the utmost accuracy in prognosticating trunk movement. Meanwhile, the Ensemble Tree approach, specifically LSBoost, exhibited the highest predictive precision for hip movement. The Gaussian regression with the kernel chosen as exponential returned the highest prediction accuracy for knee movement. These regression models hold the potential to significantly enhance the precision of visualisation of the treatment output for individuals afflicted with LBP.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3