Kibria–Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data

Author:

Lukman Adewale Folaranmi1ORCID,Allohibi Jeza2ORCID,Jegede Segun Light3ORCID,Adewuyi Emmanuel Taiwo4ORCID,Oke Segun5ORCID,Alharbi Abdulmajeed Atiah2ORCID

Affiliation:

1. Department of Mathematics, University of North Dakota, Grand Forks, ND 58202, USA

2. Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah Al-Munawara 42353, Saudi Arabia

3. Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

4. Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso 212102, Nigeria

5. Department of Physics, Chemistry and Mathematics, Alabama A&M University, Huntsville, AL 35762, USA

Abstract

Following the idea presented with regard to the elastic-net and Liu-LASSO estimators, we proposed a new penalized estimator based on the Kibria–Lukman estimator with L1-norms to perform both regularization and variable selection. We defined the coordinate descent algorithm for the new estimator and compared its performance with those of some existing machine learning techniques, such as the least absolute shrinkage and selection operator (LASSO), the elastic-net, Liu-LASSO, the GO estimator and the ridge estimator, through simulation studies and real-life applications in terms of test mean squared error (TMSE), coefficient mean squared error (βMSE), false-positive (FP) coefficients and false-negative (FN) coefficients. Our results revealed that the new penalized estimator performs well for both the simulated low- and high-dimensional data in simulations. Also, the two real-life results show that the new method predicts the target variable better than the existing ones using the test RMSE metric.

Funder

Taibah University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference24 articles.

1. Regularization and variable selection via the elastic net;Zou;J. R. Stat. Soc. Ser. B Stat. Methodol.,2005

2. Penalized Regressions: The Bridge versus the Lasso;Fu;J. Comput. Graph. Stat.,1998

3. A New Tobit Ridge-Type Estimator of the Censored Regression Model with Multicollinearity Problem;Dawoud;Front. Appl. Math. Stat.,2022

4. On the jackknife Kibria-Lukman estimator for the linear regression model;Ugwuowo;Commun. Stat. Simul. Comput.,2021

5. Combating multicollinearity: A new two-parameter approach;Idowu;Nicel Bilim. Derg.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3