Combating Multicollinearity: A New Two-Parameter Approach

Author:

IDOWU Janet Iyabo1ORCID,OLADAPO Olasunkanmi James1ORCID,OWOLABİ Abiola Timothy2ORCID,AYİNDE Kayode3ORCID,AKİNMOJU Oyinlade4ORCID

Affiliation:

1. Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria

2. LAUTECH, OGBOMOSO

3. Federal University of Technology, Akure, Ondo State, Nigeria.

4. University of Ibadan, Oyo State, Nigeria

Abstract

The ordinary least square (OLS) estimator is the Best Linear Unbiased Estimator (BLUE) when all linear regression model assumptions are valid. The OLS estimator, however, becomes inefficient in the presence of multicollinearity. Various one and two-parameter estimators have been proposed to circumvent the problem of multicollinearity. This paper presents a new twoparameter estimator called Liu-Kibria Lukman Estimator (LKL) estimator. The proposed estimator is compared theoretically and through Monte Carlo simulation with existing estimators such as the ordinary least square, ordinary ridge regression, Liu, Kibria-Lukman, and Modified Ridge estimators. The results show that the proposed estimator performs better than existing estimators considered in this study under some conditions, using the mean square error criterion. A real-life application to Portland cement and Longley datasets supported the theoretical and simulation results by giving the smallest mean square error compared to the existing estimators.

Publisher

Nicel Bilimler Dergisi based at ESOGU Istatistik Danismanlik Uygulama ve Arastirma Merkezi

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3