Enhanced Model Predictions through Principal Components and Average Least Squares-Centered Penalized Regression

Author:

Lukman Adewale F.1,Adewuyi Emmanuel T.2ORCID,Alqasem Ohud A.3ORCID,Arashi Mohammad4ORCID,Ayinde Kayode5ORCID

Affiliation:

1. Department of Mathematics, University of North Dakota, Grand Forks, ND 58202, USA

2. Department of Statistics, Ladoke Akintola University of Technology, Ogbomoso 212102, Nigeria

3. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Department of Statistics, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

5. Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468, USA

Abstract

We address the estimation of regression parameters for the ill-conditioned predictive linear model in this study. Traditional least squares methods often encounter challenges in yielding reliable results when there is multicollinearity. Therefore, we employ a better shrinkage method, average least squares-centered penalized regression (ALPR), as it offers a more efficient approach for handling multicollinearity than ridge regression. Additionally, we integrate ALPR with the principal component (PC) dimension reduction method for enhanced performance. We compared the proposed PCALPR estimation technique with existing ones for ill-conditioned problems through comprehensive simulations and real-life data analyses using the mean squared error. This integration results in superior model performance compared to other methods, highlighting the potential of combining dimensionality reduction techniques with penalized regression for enhanced model predictions.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Reference28 articles.

1. Regression analysis with multicollinear predictor variables: Definition, detection, and effects;Gunst;Commun. Stat. Theory Methods,1983

2. Weisberg, S. (1985). Applied Regression Analysis, Wiley.

3. Montgomery, D.C., Peck, A.E., and Vining, G.G. (2012). Introduction to Linear Regression Analysis, John Wiley & Sons, Inc.. [5th ed.].

4. A New biased estimator to combat the multicollinearity of the Gaussian linear regression model;Dawoud;Stats,2020

5. James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning, Springer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3