Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review

Author:

Abedini-Nassab RoozbehORCID,Pouryosef Miandoab Mahrad,Şaşmaz Merivan

Abstract

Magnetic nanoparticles have attracted significant attention in various disciplines, including engineering and medicine. Microfluidic chips and lab-on-a-chip devices, with precise control over small volumes of fluids and tiny particles, are appropriate tools for the synthesis, manipulation, and evaluation of nanoparticles. Moreover, the controllability and automation offered by the microfluidic chips in combination with the unique capabilities of the magnetic nanoparticles and their ability to be remotely controlled and detected, have recently provided tremendous advances in biotechnology. In particular, microfluidic chips with magnetic nanoparticles serve as sensitive, high throughput, and portable devices for contactless detecting and manipulating DNAs, RNAs, living cells, and viruses. In this work, we review recent fundamental advances in the field with a focus on biomedical applications. First, we study novel microfluidic-based methods in synthesizing magnetic nanoparticles as well as microparticles encapsulating them. We review both continues-flow and droplet-based microreactors, including the ones based on the cross-flow, co-flow, and flow-focusing methods. Then, we investigate the microfluidic-based methods for manipulating tiny magnetic particles. These manipulation techniques include the ones based on external magnets, embedded micro-coils, and magnetic thin films. Finally, we review techniques invented for the detection and magnetic measurement of magnetic nanoparticles and magnetically labeled bioparticles. We include the advances in anisotropic magnetoresistive, giant magnetoresistive, tunneling magnetoresistive, and magnetorelaxometry sensors. Overall, this review covers a wide range of the field uniquely and provides essential information for designing “lab-on-a-chip” systems for synthesizing magnetic nanoparticles, labeling bioparticles with them, and sorting and detecting them on a single chip.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3