A Scalable Bidimensional Randomization Scheme for TLC 3D NAND Flash Memories

Author:

Favalli MicheleORCID,Zambelli CristianORCID,Marelli Alessia,Micheloni RinoORCID,Olivo PieroORCID

Abstract

Data randomization has been a widely adopted Flash Signal Processing technique for reducing or suppressing errors since the inception of mass storage platforms based on planar NAND Flash technology. However, the paradigm change represented by the 3D memory integration concept has complicated the randomization task due to the increased dimensions of the memory array, especially along the bitlines. In this work, we propose an easy to implement, cost effective, and fully scalable with memory dimensions, randomization scheme that guarantees optimal randomization along the wordline and the bitline dimensions. At the same time, we guarantee an upper bound on the maximum length of consecutive ones and zeros along the bitline to improve the memory reliability. Our method has been validated on commercial off-the-shelf TLC 3D NAND Flash memory with respect to the Raw Bit Error Rate metric extracted in different memory working conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AERO: Adaptive Erase Operation for Improving Lifetime and Performance of Modern NAND Flash-Based SSDs;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

2. RiF: Improving Read Performance of Modern SSDs Using an On-Die Early-Retry Engine;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

3. Insights into device and material origins and physical mechanisms behind cross temperature in 3D NAND;2023 IEEE International Reliability Physics Symposium (IRPS);2023-03

4. LazyRS: Improving the Performance and Reliability of High-Capacity TLC/QLC Flash-Based Storage Systems Using Lazy Reprogramming;Electronics;2023-02-07

5. Editorial for the Special Issue on Flash Memory Devices;Micromachines;2021-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3