Abstract
In the present study, we report the fluidization behavior of ultrafine nanopowder using the assisted fluidization technique of particle mixing, which was further superimposed with the pulsation of the inlet gas flow to the fluidized bed. The powder selected in the present study was hydrophilic nanosilica, which shows strong agglomeration behavior leading to poor fluidization hydrodynamics. For particle mixing, small proportions of inert particles of Geldart group A classification were used. The inlet gas flow to the fluidized bed was pulsed with a square wave of frequency 0.1 Hz with the help of a solenoid valve controlled using the data acquisition system (DAQ). In addition to the gas flow rate to the fluidized bed, pressure transients were carefully monitored using sensitive pressure transducers connected to the DAQ. Our results indicate a substantial reduction in the effective agglomerate size as a result of the simultaneous implementation of the assisted fluidization techniques of particle mixing and flow pulsation.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献