Fluidization and Application of Carbon Nano Agglomerations

Author:

Chen Sibo1,Jiang Yaxin1,Zhu Zhenxing1ORCID,Zhang Qi2,Zhang Chenxi13,Zhang Qiang1,Qian Weizhong13,Zhang Shijun2,Wei Fei1ORCID

Affiliation:

1. Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China

2. Beijing Research Institute of Chemical Industry SINOPEC Beijing 100013 China

3. Ordos Laboratory Inner Mongolia 017000 China

Abstract

AbstractCarbon nanomaterials are unique with excellent functionality and diverse structures. However, agglomerated structures are commonly formed because of small‐size effects and surface effects. Their hierarchical assembly into micro particles enables carbon nanomaterials to break the boundaries of classical Geldart particle classification before stable fluidization under gas‐solid interactions. Currently, there are few systematic reports regarding the structural evolution and fluidization mechanism of carbon nano agglomerations. Based on existing research on carbon nanomaterials, this article reviews the fluidized structure control and fluidization principles of prototypical carbon nanotubes (CNTs) as well as their nanocomposites. The controlled agglomerate fluidization technology leads to the successful mass production of agglomerated and aligned CNTs. In addition, the self‐similar agglomeration of individual ultralong CNTs and nanocomposites with silicon as model systems further exemplify the important role of surface structure and particle‐fluid interactions. These emerging nano agglomerations have endowed classical fluidization technology with more innovations in advanced applications like energy storage, biomedical, and electronics. This review aims to provide insights into the connections between fluidization and carbon nanomaterials by highlighting their hierarchical structural evolution and the principle of agglomerated fluidization, expecting to showcase the vitality and connotation of fluidization science and technology in the new era.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3