Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study

Author:

Ali Syed Sadiq,Arsad AgusORCID,Roberts Kenneth L.,Asif MohammadORCID

Abstract

Bed collapse experiments provide vital information about fluidized bed hydrodynamics. In this study, the region-wise bed collapse dynamics of glass beads, titania (TiO2), and hydrophilic nanosilica (SiO2) particles with widely different voidages (ε) of 0.38, 0.80, and 0.98, respectively, were carefully investigated. These particles belonged to different Geldart groups and exhibited varied hysteresis phenomena and fluidization indices. The local collapse dynamics in the lower, lower-middle, upper-middle, and upper regions were carefully monitored in addition to the distributor pressure drop to obtain greater insight into the deaeration behavior of the bed. While the collapse dynamics of glass beads revealed high bed homogeneity, the upper middle region controlled the collapse process in the case of titania due to the size-based segregation along the bed height. The segregation behavior was very strong for nanosilica, with the slow settling fine agglomerates in the upper bed regions controlling its collapse dynamics. The collapse time of the upper region was 25 times slower than that of the lower region containing mainly large agglomerates. The spectral analysis confirmed the trend that was observed in the pressure transients. The clear presence of high frequency events at 20 and 40 Hz was observed in the nanosilica due to agglomerate movements. The residual air exiting the plenum was strongly affected by the bed voidage, being lowest for the nanosilica and highest for the glass beads.

Funder

Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3