Production of Antioxidants and High Value Biomass from Nannochloropsis oculata: Effects of pH, Temperature and Light Period in Batch Photobioreactors

Author:

Andriopoulos VasilisORCID,Lamari Fotini N.ORCID,Hatziantoniou SophiaORCID,Kornaros MichaelORCID

Abstract

Nannochloropsis oculata is a marine microalgal species with a great potential as food or feed due to its high pigment, protein and eicosapentaenoic acid contents. However, for such an application to be realized on a large scale, a biorefinery approach is necessary due to the high cost of microalgal biomass production. For example, techno economic analyses have suggested the co-production of food or feed with antioxidants, which can be extracted and supplied separately to the market. The aim of this study was to investigate the effect of cultivation conditions on the antioxidant capacity of Nannochlosopsis oculata extracts, derived with ultrasound-assisted extraction at room temperature, as well as the proximate composition and fatty acid profile of the biomass. A fractional factorial approach was applied to examine the effects of temperature (20–35 °C), pH (6.5–9.5) and light period (24:0, 12:12). At the end of each run, biomass was collected, washed with 0.5M ammonium bicarbonate and freeze-dried. Antioxidant capacity as gallic acid equivalents as well as pigment content were measured in the ethanolic extracts. Optimal conditions were different for productivity and biomass composition. Interesting results regarding the effect of light period (LP) and pH require further investigation, whereas the effect of moisture on the extraction process was confounded with biomass composition. Finally, further data is provided regarding the relation between chlorophyll content and apparent phenolic content using the Folin–Ciocalteu assay, in agreement with our previous work.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3