LASSO Regression with Multiple Imputations for the Selection of Key Variables Affecting the Fatty Acid Profile of Nannochloropsis oculata

Author:

Andriopoulos Vasilis12ORCID,Kornaros Michael12ORCID

Affiliation:

1. Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece

2. Institute of Circular Economy and Environment (ICEE), University of Patras’ Research and Development Center, 26504 Patras, Greece

Abstract

The marine microalga Nannochloropsis oculata has garnered significant interest as a potential source of lipids, both for biofuel and nutrition, containing significant amounts of C16:0, C16:1, and C20:5, n-3 (EPA) fatty acids (FA). Growth parameters such as temperature, pH, light intensity, and nutrient availability play a crucial role in the fatty acid profile of microalgae, with N. oculata being no exception. This study aims to identify key variables for the FA profile of N. oculata grown autotrophically. To that end, the most relevant literature data were gathered and combined with our previous work as well as with novel experimental data, with 121 observations in total. The examined variables were the percentages of C14:0, C16:0, C16:1, C18:1, C18:2, and C20:5, n-3 in total FAs, their respective ratios to C16:0, and the respective content of biomass in those fatty acids in terms of ash free dry weight. Many potential predictor variables were collected, while dummy variables were introduced to account for bias in the measured variables originating from different authors as well as for other parameters. The method of multiple imputations was chosen to handle missing data, with limits based on the literature and model-based estimation, such as using the software PHREEQC and residual modelling for the estimation of pH. To eliminate unimportant predictor variables, LASSO (Least Absolute Shrinkage and Selection Operator) regression analysis with a novel definition of optimal lambda was employed. LASSO regression identified the most relevant predictors while minimizing the risk of overfitting the model. Subsequently, stepwise linear regression with interaction terms was used to further study the effects of the selected predictors. After two rounds of regression, sparse refined models were acquired, and their coefficients were evaluated based on significance. Our analysis confirms well-known effects, such as that of temperature, and it uncovers novel unreported effects of aeration, calcium, magnesium, and manganese. Of special interest is the negative effect of aeration on polyunsaturated fatty acids (PUFAs), which is possibly related to the enzymatic kinetics of fatty acid desaturation under increased oxygen concentration. These findings contribute to the optimization of the fatty acid profile of N. oculata for different purposes, such as production of, high in PUFAs, food or feed, or production of, high in saturated and monounsaturated FA methyl esters (FAME), biofuels.

Funder

European Union

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3