Global Ionospheric Total Electron Content Completion with a GAN-Based Deep Learning Framework

Author:

Yang Kunlin,Liu YangORCID

Abstract

The ionosphere serves as a critical medium for radio signal propagation in outer space. A good morphology of the global TEC distribution is very useful for both ionospheric studies and their relative applications. In this work, a deep learning framework was constructed for better spatial estimation in ionospheric TEC. Both the DCGAN and WGAN-GP were considered, and their performances were evaluated with spatial completion for a regional TEC. The performances were evaluated using the correlation coefficient, RMSE, and MAE. Moreover, the IAAC rapid products were used to make comparisons. The results show that both the DCGAN and WGAN-GP outperformed the IAAC CORG rapid products. The spatial TEC estimation clearly goes well with the solar activity trend. The RMSE differences had a maximum of 0.5035 TECu between the results of 2009 and 2014 for the DCGAN and a maximum of 0.9096 TECu between the results of 2009 and 2014 for the WGAN-GP. Similarly, the MAE differences had a maximum of 0.2606 TECu between the results of 2009 and 2014 for DCGAN and a maximum of 0.3683 TECu between the results of 2009 and 2014 for WGAN-GP. The performances of the CORG, DCGAN, and WGAN-GP were also verified for two selected strong geomagnetic storms in 2014 and 2017. The maximum RMSEs were 1.8354 TECu and 2.2437 TECu for the DCGAN and WGAN-GP in the geomagnetic storm on 18 February 2014, respectively, and the maximum RMSEs were 1.3282 TECu and 1.4814 TECu in the geomagnetic storm on 7 September 2017. The GAN-based framework can extract the detailed features of spatial TEC daily morphologies and the responses during geomagnetic storms.

Funder

National Natural Science Foundation of China

2011 Collaborative Innovation Center of Geospatial Technology

Fundamental Research Funds for the Central Universities in China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference23 articles.

1. Ionospheric time-delay algorithms for single-frequency gps users;Klobuchar;IEEE Trans. Aerosp. Electron. Syst.,1987

2. Performance of the Galileo Single-frequency Ionospheric Correction during In-Orbit Validation;Falcone;GPS World,2014

3. The beidou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results;Yuan;Navigation,2019

4. The IGS VTEC Maps: A Reliable Source of Ionospheric Information Since 1998;Juan;J. Geod.,2009

5. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle;Krankowski;J. Geod.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3