Modeling and Forecasting Ionospheric foF2 Variation Based on CNN-BiLSTM-TPA during Low- and High-Solar Activity Years

Author:

Xu Baoyi1ORCID,Huang Wenqiang1ORCID,Ren Peng1,Li Yi1ORCID,Xiang Zheng1

Affiliation:

1. School of Telecommunication Engineering, Xidian University, Xi’an 710071, China

Abstract

The transmission of high-frequency signals over long distances depends on the ionosphere’s reflective properties, with the selection of operating frequencies being closely tied to variations in the ionosphere. The accurate prediction of ionospheric critical frequency foF2 and other parameters in low latitudes is of great significance for understanding ionospheric changes in high-frequency communications. Currently, deep learning algorithms demonstrate significant advantages in capturing characteristics of the ionosphere. In this paper, a state-of-the-art hybrid neural network is utilized in conjunction with a temporal pattern attention mechanism for predicting variations in the foF2 parameter during high- and low-solar activity years. Convolutional neural networks (CNNs) and bidirectional long short-term memory (BiLSTM), which is capable of extracting spatiotemporal features of ionospheric variations, are incorporated into a hybrid neural network. The foF2 data used for training and testing come from three observatories in Brisbane (27°53′S, 152°92′E), Darwin (12°45′S, 130°95′E) and Townsville (19°63′S, 146°85′E) in 2000, 2008, 2009 and 2014 (the peak or trough years of solar activity in solar cycles 23 and 24), using the advanced Australian Digital Ionospheric Sounder. The results show that the proposed model accurately captures the changes in ionospheric foF2 characteristics and outperforms International Reference Ionosphere 2020 (IRI-2020) and BiLSTM ionospheric prediction models.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3