Synthesis‐Style Auto‐Correlation‐Based Transformer: A Learner on Ionospheric TEC Series Forecasting

Author:

Yuan Yuhuan1,Xia Guozhen1ORCID,Zhang Xinmiao1,Zhou Chen1ORCID

Affiliation:

1. Department of Space Physics Wuhan University Wuhan China

Abstract

AbstractAccurate 1‐day global total electron content (TEC) forecasting is essential for ionospheric monitoring and satellite communications. However, it faces challenges due to limited data and difficulty in modeling long‐term dependencies. This study develops a highly accurate model for 1‐day global TEC forecasting. We utilized generative TEC data augmentation based on the International Global Navigation Satellite Service (IGS) data set from 1998 to 2017 to enhance the model's prediction ability. Our model takes the TEC sequence of the previous 2 days as input and predicts the global TEC value for each hourly step of the next day. We compared the performance of our model with 1‐day predicted ionospheric products provided by both the Center for Orbit Determination in Europe (C1PG) and Beihang University (B1PG). We proposed a two‐step framework: (a) a time series generative model to produce realistic synthetic TEC data for training, and (b) an auto‐correlation‐based transformer model designed to capture long‐range dependencies in the TEC sequence. Experiments demonstrate that our model significantly improves 1‐day forecast accuracy over prior approaches. On the 2018 benchmark data set, the global root mean squared error (RMSE) of our model is reduced to 1.17 TEC units (TECU), while the RMSE of the C1PG model is 2.07 TECU. Reliability is higher in middle and high latitudes but lower in low latitudes (RMSE < 2.5 TECU), indicating room for improvement. This study highlights the potential of using data augmentation and auto‐correlation‐based transformer models trained on synthetic data to achieve high‐quality 1‐day global TEC forecasting.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3