Evaluating the Hydrus-1D Model Optimized by Remote Sensing Data for Soil Moisture Simulations in the Maize Root Zone

Author:

Yu JingxinORCID,Wu Yong,Xu Linlin,Peng Junhuan,Chen Guangfeng,Shen Xin,Lan Renping,Zhao Chunjiang,Zhangzhong Lili

Abstract

The Hydrus-1D model is widely used for soil water content (SWC) simulations, wherein the exact configuration of soil hydraulic parameters is key to accuracy. To assess the feasibility of using “low-cost” multi-source remote sensing data to optimize the parameters of the Hydrus-1D model, five types of soil hydrodynamic parameter acquisition methods were designed for comparative evaluation, including the use of default parameters for soil texture types (DSHP), predictions from three and five soil mechanical composition parameters (NNP3/NNP5), inverse solutions from measured historical data (ISHD), and innovative introduction of historical remote sensing data (ERA-5 land reanalysis information and MODIS LAI products) instead of ground measured data for the inverse solution (ISRS). Two spring maize crops were planted in Beijing, China, in 2021 and 2022. Meteorological, soil, and crop data were collected as real measurements of the true values during the growth period. The boundary flux characteristics of the model simulation results were analyzed. The accuracy differences in the five approaches were compared from three perspectives: overall root zone, growth stage, and soil depth. The results showed that (1) evapotranspiration was the main pathway for soil water depletion in the root zone of maize; the actual total evapotranspiration accounted for 68.26 and 69.43% of the total precipitation in 2012 and 2022, respectively. (2) The accuracy of the SWC simulations in the root zone was acceptable for different approaches in the following order: NNP5 (root mean squared error (RMSE) = 5.47%) > ISRS (RMSE = 5.48%) > NNP3 (RMSE = 5.66%) > ISHD (RMSE = 5.68%) > DSHP (RMSE = 6.57%). The ISRS approach based on remote sensing data almost achieved the best performance while effectively reducing the workload and cost. (3) The accuracy of the SWC simulation at different growth stages was ranked as follows: seedling stage (mean absolute error (MAE) = 3.29%) > tassel stage (MAE = 4.68%) > anthesis maturity stage (MAE = 5.52%). (4) All approaches’ simulation errors exhibited a decreasing trend with increasing soil depth. The ISHD approach, based on the measured data, achieved the best performance at a depth of 60 cm (MAE = 2.8%). The Hydrus-1D model optimized using multi-source remote sensing data can effectively simulate SWC in the maize root zone with low working cost, which is significant for applications in areas where it is difficult to obtain field soil hydrodynamic property parameters to simulate SWC at a global scale.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Maize Agro-Food Systems to Ensure Food and Nutrition Security in Reference to the Sustainable Development Goals;Tanumihardjo;Glob. Food Secur.,2020

2. (2022, June 11). China National Bureau of Statistics Information Disclosure of National Bureau of Statistics, Available online: http://www.stats.gov.cn/xxgk/jd/sjjd2020/202112/t20211206_1825067.html.

3. Adeyemi, O., Grove, I., Peets, S., Domun, Y., and Norton, T. (2018). Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors, 18.

4. The Effect of Soil Moisture Anomalies on Maize Yield in Germany;Peichl;Nat. Hazards Earth Syst. Sci.,2018

5. Soil Moisture Forecast for Smart Irrigation: The Primetime for Machine Learning;Togneri;Expert Syst. Appl.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3