Identification of Cabbage Seedling Defects in a Fast Automatic Transplanter Based on the maxIOU Algorithm

Author:

Zhang Gan,Wen Yongshuang,Tan Yuzhi,Yuan Ting,Zhang Junxiong,Chen Ying,Zhu Sishuo,Duan Dongshuai,Tian Jinyuan,Zhang Yu

Abstract

The automatic identification of seedling defects is an important technology of an intelligent automatic transplanting machine, which effectively improves the quality of the transplanting machine’s operation. The accurate segmentation of seedling substrate and seedling region is the key to the success of the seedling defect recognition algorithm. This paper proposes the maxIOU algorithm to calculate the image segmentation threshold: The image G channel and excess green color space were selected as the color space for the segmentation of the substrate region and seedling region by analyzing the color histogram. Several images were randomly selected from the dataset to generate a training set and were labeled manually as the ground truth. The training set images were segmented using a threshold of zero to 255, and the intersection over union (IOU) were calculated using the algorithm segmented result and the ground truth. The threshold corresponding to the average IOU maximum was used as the segmentation threshold. After image segmentation, three features (area of the substrate, area of the seedling, and filling ratio of the lower part of the substrate) were obtained by the algorithm, and the image was identified for whether there was an empty conveyor belt, seedling deficiency, multiple seedlings, skew, and damaged substrate. The algorithm was tested on the automatic transplanter test platform. The experiment results were as follows: Firstly, the image segmentation threshold was calculated by the maxIOU method. The color component interval corresponding to the segmented substrate region was [0, 24] in the G channel, and the color component interval corresponding to the segmented seedling region was [21, 255] in the excess green channel. The average IOU of the substrate area was 0.854, and the average IOU of the seedling area was 0.820 in the verification experiment. Secondly, a dataset including 431 normal seedling images and 69 defective seedling images (empty conveyor belt, seedling deficiency, multiple seedlings, skew, and damaged substrate) was identified for defects. The accuracy, precision, and recall were 97.6%, 97.4%, and 99.8%. The processing time was 71.4 ms. The conclusion of the experiment was as follows: the maxIOU algorithm had high accuracy in the segmentation of the substrate and seedling region. The defect identification algorithm had high accuracy for defect identification of cabbage seedlings, and the algorithm had good real-time performance, which can be applied to high speed field transplanters.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference32 articles.

1. Detecting cabbage seedling diseases by using chlorophyll fluorescence

2. Identification of seedling cabbages and weeds using hyperspectral imaging;Wei;Int. J. Agric. Biol. Eng.,2015

3. 3D Multimodal Simulation of Image Acquisition by X-ray and MRI for Validation of Seedling Measurements with Segmentation Algorithms;Benoit,2015

4. Seedling image segmentation and feature extraction under complicated background;Lu;Commun. Comput. Inf. Sci.,2014

5. Corn seedling image segmentation using PCA and CV model;Cheng;J. Comput. Inf. Syst.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3