Design of and Experiment with Seedling Selection System for Automatic Transplanter for Vegetable Plug Seedlings

Author:

Wen YongshuangORCID,Zhang Leian,Huang Xuemei,Yuan Ting,Zhang Junxiong,Tan Yuzhi,Feng Zhongbin

Abstract

In the process of vegetable plug seedling cultivation, packaging, and transportation, there may be missing, unhealthy or injured seedlings in the tray, which results in a missed planting or a low seedling survival rate after automatic transplanting. In this study, a seedling selection system with the function of seedlings identification, week seedlings elimination, and missing seedlings supplement was developed for an automatic transplanter. A plug seedling identification system based on a machine vision was used to detect vegetable plug seedlings based on the area characteristics of plug seedlings, stem leaves and plug bodies. The identification results were transmitted to a programmable logic controller (PLC), which controlled a nozzle to eliminate the unqualified seedlings from the conveyor belt lattice. When the empty conveyor belt lattice reaches the seedling throwing funnel, the rear conveyor belt lattice with the plug seedling is accelerated to ensure the continuity of seedlings supply. The adaptive fuzzy PID control algorithm was used to control the stepper motor of the conveyor belt to realize accurate seedling conveying and a seedling supplement. Using 30 days pepper plug seedlings as experimental seedlings, a comparative field experiment was carried out to evaluate the performance of the seedling selection system. The results showed that when the seedling selection system was turned on and the seedling extracting frequencies were 60, 80, and 100 plants/min, the success rates of plug seedling identification were 98.84%, 98.38%, and 96.99%, and the robust seedling rates were 98.05%, 97.78%, and 95.83%. The robust seedling rates were increased by 15.64%, 16.07%, and 13.89%, respectively, in contrast to turning off the seedling selection system.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3