Establishment of the Interaction Simulation Model between Plug Seedlings and Soil

Author:

Zeng Fandi12ORCID,Cui Ji2,Li Xuying2,Bai Hongbin2ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China

2. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

Abstract

Currently, the simulation parameters for the model of the interaction between the transplanter, the plug seedlings, the soil, and the pot damage mechanism still need to be clarified. The optimization design of the planters and the improvement of planting quality are still urgent issues that need to be solved. In this paper, the simulation parameters of the pot and the soil were calibrated based on the pressure distribution measurement technology. With the actual collision impact force and matrix loss rate as the targets, a four-factor, three-level orthogonal test was designed to obtain the optimal parameters. Through the optimization analysis of the experimental results, it could be concluded that the pot–soil restitution coefficient, the pot–soil static friction coefficient, the pot–soil rolling friction coefficient, and the surface energy were 0.31, 0.88, 0.35, and 1.07 J/m2, respectively. The experimental verification of the optimal parameter combination showed that the relative error of the collision impact force was 1.65% and that the relative error of the matrix loss rate was 2.32%, which verified the model’s reliability. Based on the optimal parameters, the movement law of the hole tray seedlings was studied at different positions during the transplanting process. The plug seedlings collided not only with the planter but also with the soil, which led to the breakage and looseness of the pot structure. The relative error between the matrix loss rate of the transplanter inserting soil, the matrix loss rate of the transplanter that did not enter the soil, and the simulated matrix loss rate was less than 10%, which further proved the accuracy of the simulation model.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Inner Mongolia Autonomous Region of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3