Detection Method and Experimental Research of Leafy Vegetable Seedlings Transplanting Based on a Machine Vision

Author:

Fu Wei,Gao Jinqiu,Zhao Chunjiang,Jiang Kai,Zheng Wengang,Tian Yanshan

Abstract

In view of the need to remove empty cells and unqualified seedlings for automatic transplanting of leafy vegetable seedlings, this paper proposes a method to detect the growth parameters of leafy vegetable seedlings by using machine vision technology. This method uses the image processor PV200 to perform image grayscale, threshold segmentation, corrosion, expansion, area division, etc. to obtain the pixel value of the leaf area of the seedling and compare it with the set standard value, which provides guiding information for eliminating empty cells and unqualified seedlings. Lettuce seedlings at 17 days, 20 days, and 22 days of seedling age were used as the test objects, and the growth status and test results of the seedlings were analyzed to determine the optimum seedling age for transplanting. The test results show that there is basically no leaf cross-border between the lettuce seedlings at the age of 17 days, the average pixel area of the leaves is 3771.74, and the detection accuracy rate is 100%; the seedlings at the age of 22 days grow 5–6 leaves, the detection accuracy of unqualified seedlings and qualified seedlings was 62.50% and 88.16%, respectively, and the comprehensive detection accuracy was 85.71%. The comprehensive detection accuracy rate showed a downward trend with the increase of seedling age, mainly due to the partial occlusion between leaves. The transplanting of leafy vegetable seedlings is a sparse transplanting operation, and the seedling spacing increases after transplanting. Therefore, the detection of seedlings in the process of transplanting can greatly improve the recognition accuracy and solve the problem that the leaves of the seedlings in the seedling tray are obscured by each other and affect the detection accuracy. The research results can provide a theoretical basis and design reference for the development of the visual inspection system and the transplanting actuator of the leafy vegetable seedlings transplanting robot.

Funder

Tianjin Intelligent Agriculture Research Academy

Key Research and Development Program of Ningxia China

Beijing engineering laboratory of agricultural Internet of Things technology

BAAFS Innovation Ability Project

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference30 articles.

1. Development status and future research emphases on greenhouse horticultural equipment and its relative technology in China;Trans. Chin. Soc. Agric. Eng.,2017

2. Development of intelligent equipment for protected horticulture in world and enlightenment to China;Trans. Chin. Soc. Agric. Eng.,2019

3. Current Status and Development Trends of Agricultural Robots;Trans. Chin. Soc. Agric. Mach.,2022

4. Forecast research and development trend of international agricultural robot and its suitability to China;J. Chin. Agric. Mech.,2021

5. Application status and development trend of robots in the field of facility agriculture;J. Chin. Agric. Mech.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3