Prediction of Useful Eggplant Seedling Transplants Using Multi-View Images

Author:

Yuan Xiangyang1,Liu Jingyan1,Wang Huanyue1,Zhang Yunfei1,Tian Ruitao1,Fan Xiaofei12

Affiliation:

1. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China

2. State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China

Abstract

Traditional deep learning methods employing 2D images can only classify healthy and unhealthy seedlings; consequently, this study proposes a method by which to further classify healthy seedlings into primary seedlings and secondary seedlings and finally to differentiate three classes of seedling through a 3D point cloud for the detection of useful eggplant seedling transplants. Initially, RGB images of three types of substrate-cultivated eggplant seedlings (primary, secondary, and unhealthy) were collected, and healthy and unhealthy seedlings were classified using ResNet50, VGG16, and MobilNetV2. Subsequently, a 3D point cloud was generated for the three seedling types, and a series of filtering processes (fast Euclidean clustering, point cloud filtering, and voxel filtering) were employed to remove noise. Parameters (number of leaves, plant height, and stem diameter) extracted from the point cloud were found to be highly correlated with the manually measured values. The box plot shows that the primary and secondary seedlings were clearly differentiated for the extracted parameters. The point clouds of the three seedling types were ultimately classified directly using the 3D classification models PointNet++, dynamic graph convolutional neural network (DGCNN), and PointConv, in addition to the point cloud complementary operation for plants with missing leaves. The PointConv model demonstrated the best performance, with an average accuracy, precision, and recall of 95.83, 95.83, and 95.88%, respectively, and a model loss of 0.01. This method employs spatial feature information to analyse different seedling categories more effectively than two-dimensional (2D) image classification and three-dimensional (3D) feature extraction methods. However, there is a paucity of studies applying 3D classification methods to predict useful eggplant seedling transplants. Consequently, this method has the potential to identify different eggplant seedling types with high accuracy. Furthermore, it enables the quality inspection of seedlings during agricultural production.

Funder

National Natural Science Foundation of China

CARS

Innovative Research Group Project of Hebei Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3