Optimization of an Aqueous Enzymatic Method and Supercritical Carbon Dioxide Extraction for Paeonia suffruticosa Andr. Seed Oil Production Using Response Surface Methodology (RSM)

Author:

Qin Hongwei12,Hu Yanying12,Cheng Dongdong12,Li Fujia3,Han Xiaolong12,Sun Jinyue4ORCID

Affiliation:

1. School of Life Science and Bioengineering, Jining University, Jining 273155, China

2. Jining Key Laboratory of Bioresource Development and Utilization, Jining University, Jining 273155, China

3. Shandong Xiaoying Biotechnology Co., Ltd., Jinan 250003, China

4. Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China

Abstract

Peony seed oil, a type of tree nut oil, has attracted the attention of nutritionists for its rich nutritional content. The aim of this study was to extract oil from the peony seed utilizing green and efficient methods. Specifically, aqueous enzymatic extraction was optimized using the Plackett–Burman design combined with the mixture design to extract the optimal enzyme ratio of peony seed oil. When the dosage of enzymes was 10 mg protein/g peony seed, the optimal ratios of the dosages of papain, cellulase, and pectinase were 16.15%, 31.33%, and 52.53%, respectively. Subsequently, central composite design was adopted to optimize supercritical CO2 extraction to identify the process parameters of extracting residual oil from the residue of the aqueous enzymatic extraction. Almost 6.30% of peony seed oil could be obtained from the residue using continuous extraction for 1.58 h at 49.41 °C and 59.75 Mpa. After mixing the peony seed oil extracted by the two processes, its physicochemical indices were measured. Compared with commercial peony seed oil extracted based on the organic solvent leaching method, the elative density and iodine value were higher based on our approach, whereas the other indices showed no significant differences. Thus, the two-step strategy combining the aqueous enzymatic method and supercritical CO2 extraction can be effectively applied to peony seed oil production.

Funder

Jining Key Research and Development Plan

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3