Potential Biofertilizers for Alkaline Soil: Bacteria Isolated from the Rhizosphere of Potatoes

Author:

Yu Zhongchen1,Chen Caiding1,Li Zhou2,Song Yunjie1,Yan Chunhong1,Jiang Xinyu1,Jia Heng1,Shang Yi1,Tian Mengqing1ORCID

Affiliation:

1. Key Laboratory for Potato Biology of Yunnan Province, The CAAS-YNNU-YINMORE Joint Academy of Potato Science, Yunnan Normal University, Kunming 650092, China

2. Zhaotong Academy of Agricultural Sciences, Zhaotong 657000, China

Abstract

Root-associated microorganisms, which can be recruited specially by plants to cope with environmental stress under extreme conditions, are one of the major mediators of nutrient exchange between plants and the environment. To obtain more crop-beneficial microbes, rhizosphere bacteria of Désirée potatoes cultivated in poor and alkaline soil have been studied. The screening of 83 strains with incomplete identical 16S rDNA sequences showed that 47 strains produced indole acetic acid (IAA), with contents ranging from 0.2 to 42 mg/L, and seven strains were phosphorus-solubilizing, among which six strains significantly increased the growth rate of potato plants. Thirty-seven strains produced siderophore and four strains were zinc-solubilizing, among which three strains significantly alleviated the chlorosis of potato plants. In all of the isolates, the species Variovorax soli (ST98) and Cellulomonas biazotea (ST118) were first found to possess an IAA-secreting ability; the species Leifsonia aquatica (ST172) and Leifsonia naganoensis (ST177) and the genus Sutcliffiella (ST11) were first discovered to be capable of phosphorus solubilization; the species Chryseobacterium daecheongense (ST32) was the first reported to be capable of zinc solubilization; and the species V. soli (ST98), C. biazotea (ST118) and L. naganoensis (ST177) were first found to be capable of plant growth promotion. The discovery of multiple functional bacteria enriched the resources of plant growth-promoting bacteria and provided a foundation for biofertilizer production to improve soil conditions and crop production.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Yunnan Provincial Science and Technology Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3