Effects of Soft Rock and Biochar Applications on Millet (Setaria italica L.) Crop Performance in Sandy Soil

Author:

Sun Yingying,Zhang Ningning,Yan JiakunORCID,Zhang Suiqi

Abstract

In arid and semi-arid regions, desertification threatens crop production because it reduces the soil’s capacity to retain water and soil nutrients. At two fertilizer levels (90 kg N hm−2 and 45 kg P hm−2 and 270 kg N hm−2 and 135 kg P hm−2), the effects of soft rock (sand: soft rocks = 3:1) and biochar (4500 kg hm−2) applications on soil moisture, soil nutrients, and millet (Setaria italica L.) photosynthesis, yield, and its agronomic traits (biomass, thousand kernel weight, harvest index) were investigated in a field experiment in the Mu Us Sandy Land of China in 2018–2019. The addition of biochar and soft rock singly increased soil water content, alkali-hydrolyzed nitrogen (AN), total nitrogen (TN) and phosphorus (TP), and organic matter content significantly, suggesting that their application may increase the nutrient and water holding capacity of soil. Application of biochar and soft rock singly increased the net photosynthesis rate of millet flag leaf, at the flowering stage, from 15.97% to 56.26%. Biochar and soft rock application increased the yield range (2109.0 kg hm−2 to 5024.7 kg hm−2) from 5.26% to 54.60% under the same fertilizer level. Correlation analyses showed grain yield was significantly correlated with photosynthesis rate at the flowering stage, which was significantly correlated with soil AN at flowering, soil TP at flowering and harvest, and soil TN at flowering. These results indicated that the application of biochar and soft rock singly could increase soil fertilizer holding capacity to improve the photosynthesis rate at flowering, and, therefore, lead to improvements in crop yield.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3