Straw Return Substituting Potassium Fertilizer Increases Crop Yield, Efficiency, and Quality in Maize-Wheat Rotation System

Author:

Guo Jinhua1,Jiang Peipei1,Zhang Jun1,Dong Shiyan1,Tian Wenzhong23,Li Junhong23,Li Fang23,Lv Junjie23,Yao Yuqing23,Hou Yuanquan1,Wu Shanwei1,Shaaban Muhammad1ORCID,Huang Ming1,Li Youjun1

Affiliation:

1. College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China

2. Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, China

3. Luoyang Dryland Agriculture Test Site, Chinese Academy of Agricultural Sciences Luoyang, Luoyang 471023, China

Abstract

The application of potassium fertilizer application and straw return are effective agronomic measures for increasing crop productivity; however, information on how straw return—when substituting potassium fertilizer—affects crop yield, efficiency, and quality in dryland remains limited. In this study, an experiment on a dryland summer maize and winter wheat rotation system was initiated in 2007. This study included four treatments: CK (no fertilizer and no straw return), NP (nitrogen and phosphorus fertilizer application without straw return), NPK (nitrogen, phosphorus, and potassium fertilizer application without straw return), and NPS (NP treatment with straw return, substituting potassium fertilizer as used in the NPK treatment). These treatments were employed to assess grain yield and fertilizer agronomic efficiency in 2015–2020. Additionally, we evaluated the content of nitrogen (N), phosphorus (P), and potassium (K), as well as the protein content and protein yield in maize and wheat grains and the protein components in wheat grains in 2019–2020. The results showed that compared to the CK treatment, NP, NPK, and NPS treatments not only significantly increased the yield, protein yield, and fertilizer agronomic efficiency in both maize and wheat but also increased the content of protein and protein components in wheat grains. Compared to the NP treatment, the NPK treatment significantly increased the contents of N, K, globulin, and gluten in wheat grains by 5.11%, 21.59%, 10.06%, and 15.14%. Compared to NPK treatment, NPS treatment significantly increased the average yield of summer maize by 21.33% and 20.91%, respectively, as well as the annual yield by 9.99% and 13.59%, the N fertilizer agronomic efficiency of summer maize by 132.47%, and the annual N and P fertilizer agronomic efficiency by 42.83% and 64.36%, over the five-year period. The NPS treatment also significantly increased the summer maize protein yield and annual protein yield by 10.43% and 23.08%, as well as the content of protein components, the protein content, and P content in wheat grains by 4.93–13.58%, 7.81%, and 28.89%, respectively. In conclusion, NPS treatment can not only enhance crop yield, protein yield, and fertilizer agronomic efficiency in summer maize annually but also has the advantage of promoting wheat quality. NPS is an efficient strategy to improve crop yield, efficiency, and quality in a dryland maize–wheat rotation system.

Funder

National Key Research and Development Program of China

Science and Technology Research Project of Henan, China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3