Higher Seed Rates Enlarge the Effects of Wide-Belt Sowing on Root Length Density, Thereby Improving Nitrogen Uptake and Use Efficiencies in Winter Wheat

Author:

Wang Yuechao1ORCID,Li Wen1,Deng Yaoyao1ORCID,Xue Jianfu1ORCID,Gao Zhiqiang1

Affiliation:

1. College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China

Abstract

The optimized sowing method and appropriate seed rate can improve wheat N use efficiency. However, the interactive effect of the sowing method and seed rate on N use efficiency, particularly N uptake and root length density, are unclear. A field experiment was conducted for two growing seasons in southern Shanxi province, China, using a split-plot design with the sowing method as the main plot (wide-belt sowing, WBS, and conventional narrow-drill sowing, NDS) and seed rate as the sub-plot (100–700 m−2). Our results showed that WBS had a significant and positive effect on N use efficiency (yield per unit of available N from the fertilizer and soil, by 4.7–15.4%), and the relatively higher seed rates (>300 or 400 m−2) enlarged the effects. The N use efficiency increases under WBS were mainly attributed to the increases in N uptake before anthesis, resulting from the promoted nodal roots per plant and per unit area, and root length density in the top layer(s). WBS promoted N translocation and the N harvest index, resulting in equivalent grain protein concentration and processing quality compared to NDS. Thus, adopting higher seed rates (>300 m−2) combined with WBS is recommended for achieving greater N efficiencies while maintaining the grain protein concentration and processing quality of winter wheat.

Funder

Ministerial and Provincial Co-Innovation Centre for Endemic Crop Production with High-Quality and Efficiency in Loess Plateau

Shanxi Agricultural University Scientific Research Fund

Shanxi University Technological Innovations Plan

Shanxi Fundamental Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3