Yield Predictions of Four Hybrids of Maize (Zea mays) Using Multispectral Images Obtained from UAV in the Coast of Peru

Author:

Saravia David12ORCID,Salazar Wilian1ORCID,Valqui-Valqui Lamberto1ORCID,Quille-Mamani Javier13,Porras-Jorge Rossana12ORCID,Corredor Flor-Anita1ORCID,Barboza Elgar14ORCID,Vásquez Héctor14ORCID,Casas Diaz Andrés2,Arbizu Carlos14ORCID

Affiliation:

1. Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, Peru

2. Facultad de Agronomía, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 15024, Peru

3. Grupo de Cartografía GeoAmbiental y Teledetección, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain

4. Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas 01001, Peru

Abstract

Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference65 articles.

1. Naciones Unidas (2022, April 18). Paz, Dignidad e Igualdad en un Planeta Sano. Available online: https://www.un.org/es/sections/issues-depth/population/index.html.

2. Obour, P.B., Arthur, I.K., and Owusu, K. (2022). The 2020 Maize Production Failure in Ghana: A Case Study of Ejura-Sekyedumase Municipality. Sustainability, 14.

3. Zhao, M., and Bingcan, C. (2022). Maize Oil. Ref. Modul. Food Sci., 22.

4. FAO (2022, April 10). Nota Informativa de la FAO Sobre la Oferta y la Demanda de Cereales. Available online: https://www.fao.org/worldfoodsituation/csdb/es/.

5. Ahmad, A., Ordoñez, J., Cartujo, P., and Martos, V. (2020). Remotely piloted aircraft (RPA) in agriculture: A pursuit of sustainability. Agronomy, 11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3